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We present new integer linear programming (ILP) models for N P -hard optimisation problems in in- 

stances of the Stable Marriage problem with Ties and Incomplete lists (SMTI) and its many-to-one gener- 

alisation, the Hospitals/Residents problem with Ties (HRT). These models can be used to efficiently solve 

these optimisation problems when applied to (i) instances derived from real-world applications, and (ii) 

larger instances that are randomly-generated. In the case of SMTI, we consider instances arising from the 

pairing of children with adoptive families, where preferences are obtained from a quality measure of each 

possible pairing of child to family. In this case, we seek a maximum weight stable matching. We present 

new algorithms for preprocessing instances of SMTI with ties on both sides, as well as new ILP models. 

Algorithms based on existing state-of-the-art models only solve 6 of our 22 real-world instances within 

an hour per instance, and our new models incorporating dummy variables and constraint merging, to- 

gether with preprocessing and a warm start, solve all 22 instances within a mean runtime of a minute. 

For HRT, we consider instances derived from the problem of assigning junior doctors to foundation posts 

in Scottish hospitals. Here, we seek a maximum size stable matching. We show how to extend our mod- 

els for SMTI to HRT and reduce the average running time for real-world HRT instances by two orders 

of magnitude. We also show that our models outperform by a wide margin all known state-of-the-art 

models on larger randomly-generated instances of SMTI and HRT. 

© 2019 The Authors. Published by Elsevier B.V. 
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1. Introduction 

1.1. Background 

In a stable matching problem, we are given a set of agents, each

of whom ranks all the others in strict order of preference, indicat-

ing their level of desire to be matched to each other. A solution of

the problem is a pairing of all agents such that no two agents form

a blocking pair , i.e., a pair that are not currently matched together,

but would prefer to be matched to each other rather than to their

currently assigned partners. 

Without any other constraints, this problem is known as the

Stable Roommates (SR) problem ( Gale & Shapley, 1962; Gusfield &

Irving, 1989 ), and the objective is to partition the n agents into n /2
∗ Corresponding author. 
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airs (e.g., doubles in a tennis tournament) such that no blocking

air exists. 

The Stable Marriage problem (SM) is a bipartite restriction of

R, where the agents are split into equal-sized sets of men and

omen, and it is assumed that men only find women acceptable

nd vice versa. This problem was first introduced by Gale and

hapley (1962) , who also gave a linear-time algorithm for finding

 stable matching. 

It is not always desirable, or even possible, to have every agent

xpress a preference over all other agents. In the Stable Marriage

roblem with Incomplete lists (SMI), agents can identify potential

artners as being unacceptable, meaning that they would rather be

nmatched than matched to such agents, and a slight modification

f the Gale–Shapley algorithm will find a stable matching in linear

ime ( Gusfield and Irving, 1989 , Section 1.4.2). It turns out that all

table matchings in a given instance of SMI have the same size

 Gale & Sotomayor, 1985 ). 

In many applications it is not realistic to expect that agents

ave sufficient information to enable them to rank their acceptable
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Summary of matching problems. 

Variant Bipartite Incompatible pairs Ties Weights Capacity 

SR No No No No No 

SR-GRP No Yes Yes Yes No 

SM Yes No No No No 

SMI Yes Yes No No No 

SMT Yes No Yes No No 

SMTI Yes Yes Yes No No 

SMTI-GRP Yes Yes Yes Yes No 

SMTI-SYM Yes Yes Yes Yes No 

HRT Yes Yes Yes No Yes 
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H  
otential partners in strict order of preference. In reality, prefer-

nce lists may include ties, where a tie indicates a set of agents

hat are equally desirable. This gives rise to another variant of SM

nown as the Stable Marriage problem with Ties (SMT) ( Irving,

994 ). It is known that resolving indifference by employing tie-

reaking is not a good strategy, since it over-constrains the prob-

em ( Erdil & Erkin, 2008 ). Instead, three levels of stability ( Irving,

994 ) have been defined in the SMT case, where ties are retained,

hat vary according to whether agents will agree to swap between

hoices they find equally acceptable. Under the weakest of these

hree definitions, which we assume in this paper, a stable match-

ng can always be found by arbitrarily breaking the ties, resulting

n an instance of SM. 

If both ties and incomplete lists are introduced we obtain the

table Marriage problem with Ties and Incomplete lists, or SMTI

 Manlove, Irving, Iwama, Miyazaki, & Morita, 2002 ). In an instance

f SMTI, stable matchings do not necessarily have the same size,

nd MAX-SMTI, the problem of finding a stable matching of maxi-

um size, is N P -hard ( Manlove et al., 2002 ). 

The Stable Roommates problem with Globally Ranked Pairs (SR-

RP) ( Abraham, Levavi, Manlove, & O’Malley, 2008; Arkin et al.,

009 ) is a variant of the Stable Roommates problem involving ties

nd incomplete lists in which each pair of compatible agents { p , q }

as a weight w ({ p, q } ) assigned to their potential pairing, and the

reference lists of each agent can be derived from these weights in

he obvious manner: given two compatible pairs { p , q } and { p , r }, p

refers q to r if and only if w ({ p, q } ) > w ({ p, r} ) . This problem can

e restricted to give the Stable Marriage problem with Ties, Incom-

lete lists, and Globally Ranked Pairs (SMTI-GRP) by splitting the

gents into two sets as per the Stable Marriage problem. 

In this work, we study one application of SMTI-GRP involving

he pairing of children with adoptive families as coordinated by

he British charity Coram. 1 Social workers determine a weight to

e assigned to each child–family pair ( c , f ), as a predicted mea-

ure of the suitability of placing c with f , giving an instance of

MTI-GRP. Currently Coram is using a clearing house system which

airs children and families at suitable specified intervals. Similar to

he case for kidney exchange programmes ( Roth, Sönmez, & Ünver,

004 ), this allows for a more efficient pairing of children and fam-

lies, at the cost of a slightly increased delay between entering the

ystem and being paired. In such a system Coram has decided that

he goal should be to find a stable matching that pairs as many

hildren as possible and/or has maximum overall weight. 2 More-

ver, Coram would like to ensure that the computed matching is

iable in the long term. To this end, a lower bound, or threshold,

n suitable weights is used to create refined instances of SMTI-

RP where child–family pairs with weights below the threshold

re not allowed to be matched together. However, attempts to de-

ermine appropriate threshold values, as well as good weighting

unctions and suitable intervals between matching runs, have been

ampered by the lack of tractable algorithms for finding maximum

eight stable matchings for such instances. Indeed, in the SMTI-

RP setting, N P -hardness holds for each of the problems of find-

ng a maximum size stable matching ( Abraham et al., 2008 ) and a

aximum weight stable matching ( Deligkas, Mertzios, & Spirakis,

017 ). 

Whilst SMTI is a one-to-one matching problem, in some appli-

ations one set of agents can be matched with more than one part-

er. The Hospitals/Residents (HR) problem ( Gale & Shapley, 1962;

anlove, 2015 ) is a many-to-one extension of SMI that models

he assignment of intending junior doctors (residents) to hospitals.
1 Coram—better chances for children since 1739, https://www.coram.org.uk . 
2 The child–family pairings in a computed stable matching are treated merely as 

uggestions that will be investigated further by social workers for suitability before 

ny actual assignments are made. 
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ach doctor is to be assigned to at most one hospital, whilst each

ospital may be assigned multiple doctors up to some given capac-

ty. HR can be generalised to include ties in the preference lists,

eading to the Hospitals/Residents with Ties (HRT), the many-to-

ne generalisation of SMTI. HRT has many applications: it models,

or example, the assignment of medical graduates to Scottish hos-

itals as part of the Scottish Foundation Allocation Scheme (SFAS),

hich ran between 1999 and 2012. Since then, the UK has amalga-

ated all such schemes into the UK Foundation Programme, which

andles the assignment of almost 80 0 0 doctors to approximately

0 0 0 positions across 20 Foundation Schools, each of which con-

ists of multiple hospitals ( UK Foundation Programme ). In this set-

ing a key aim is to find a stable matching of maximum size, which

s an N P -hard problem in view of the N P -hardness of MAX-SMTI.

An overview of the differences between problems discussed in

he paper is given in Table 1 . The relationships between these

roblems are demonstrated in Fig. 1 . In the diagram, an arrow

rom problem A to problem B indicates that problem B is a spe-

ial case of problem A. For example, SMTI-SYM is the special case

f SMTI-GRP in which preferences are symmetric. 

.2. Our contribution 

In this paper, we have developed several new techniques that

mprove the performance of ILP models for instances of both SMTI

nd HRT. Our first contribution is to present two algorithms for

reprocessing instances of SMTI with ties on both sides. Without

uch preprocessing, only 6 of 22 real-world instances from Coram

ould be solved within an hour per instance using state-of-the-

rt models from the literature. Our new preprocessing significantly

mproves this, finding solutions to 21 of the 22 instances in an av-

rage of 434 seconds. We also present new ILP models for SMTI

nd HRT. These use dummy variables to reduce the number of

on-zero entries in their corresponding constraint matrices, which

astly increases the sparsity of the constraint matrix at the cost

f additional variables. Further, we formulate different sets of con-

traints to model stability, including the use of redundant con-

traints to improve the continuous relaxations of our models. We

est each of these individually, and these improvements together

llow us to find solutions to all real-world instances in a mean

untime of less than 60 seconds. Turning to randomly-generated

nstances, the new models also solve all 30 random instances of

MTI that we generated with 50,0 0 0 agents on either side and

reference lists of length 5 on one side, while existing state-of-the-

rt models could only solve 20. We extend our new ILP models to

RT, where we show a reduction in the mean runtime on existing

eal-world instances of HRT from SFAS, decreasing the average run-

ime from 144 seconds to only 3 seconds. We also generate 90 ran-

om instances that mimic the UK Foundation Programme (with

bout 7500 doctors and positions). Existing models solve 66 of

hese, while our new models solve 81. 

https://www.coram.org.uk
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Fig. 1. Relationships between matching problems. 
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1.3. Related work 

MAX-SMTI is known to be N P -hard even if each tie occurs at

the end of some agent’s preference list, ties occur on one side

only and each tie is of length two ( Manlove et al., 2002 ). The

special case of MAX-SMTI that asks if an instance of SMTI has a

stable matching that matches every man and woman is also N P -

complete ( Manlove et al., 2002 ), and this result holds even when

preference lists have lengths of at most 3 and ties occur on one

side only ( Irving, Manlove, & O’Malley, 2009 ). 

MAX-SMTI is also not approximable within a factor of

21/19 ( Halldórsson, Iwama, Miyazaki, & Yanagisawa, 2007 ) unless

P = N P, even if preferences on one side are strictly ordered, and

on the other side are either strictly ordered or a tie of length two.

The best currently-known performance guarantee is 3/2, achieved

first in non-linear running time ( McDermid, 2009 ) and later im-

proved to linear time ( Király, 2013; Paluch, 2014 ), although bet-

ter guarantees can be achieved in certain restrictions ( Iwama

& Miyazaki, 2016 ). Király (2013) shows how to extend his 3/2-

approximation algorithm for MAX-SMTI to HRT. 

The Stable Marriage problem with Ties, Incomplete lists and

Symmetric preferences (SMTI-SYM) is a restriction of SMTI-GRP

such that (i) for each man–woman pair (u, v ) , the rank of v in u ’s

list, i.e., the integer k such that v belongs to the k th tie in u ’s list,

is equal to the rank of u in v ’s list, and (ii) the weight of (u, v ) is
precisely this integer k . Finding a maximum size stable matching in

an instance of SMTI-SYM is N P -hard, and therefore the same re-

sult holds for SMTI-GRP ( Abraham et al., 2008 ). Given an instance

of SMTI-GRP, if the goal is to find a matching that maximises the

total weight rather than the total size, this problem is N P -hard

also ( Deligkas et al., 2017 ). 

Linear programming models for SM and SMI have been long

studied, and stable matchings correspond exactly to extreme

points of the solution polytopes of such models ( Gusfield & Irv-

ing, 1989; Vande Vate, 1989 ). These formulations have been ex-

tended to give ILP models for finding maximum size stable match-

ings in instances of SMTI and HRT ( Kwanashie, 2015; Kwanashie

& Manlove, 2014 ). ILP models have also been given for a common

extension of HR that allows doctors to apply as couples, typically

so that both members can be matched to hospitals that are geo-

graphically close ( Ágoston, Biró, & McBride, 2016; Drummond, Per-

rault, & Bacchus, 2015; Hinder, 2015; Manlove, McBride, & Trimble,

2017; McBride, 2015 ). Other techniques in the field include con-

straint programming, which has been applied to SM and its vari-

ants ( Gent, Irving, Manlove, Prosser, & Smith, 2001; Gent & Prosser,

2002; Manlove, O’Malley, Prosser, & Unsworth, 2005; O’Malley,

2007 ), and the use of SAT models and SAT solvers ( Drummond

et al., 2015; Gent & Prosser, 2002 ). 

Diebold and Bichler (2017) performed a thorough experimental

study of eight algorithms for HRT, giving a comparison of these al-

gorithms when applied to real-world HRT instances derived from

a course allocation system at the Technical University of Munich.
 m  
hese datasets ranged in size from 18–733 students (the “doc-

ors”) and 3–43 courses (the “hospitals”). The authors measured

 number of attributes of the algorithms, including the sizes of

he computed stable matchings. The methods that they consid-

red included three exact algorithms for MAX-HRT based on the

LP model presented in Kwanashie and Manlove (2014) . 

Slaugh, Akan, Kesten, and Ünver (2016) described improvements

hey had made to the mechanism for matching children to adop-

ive families as utilised by the Pennsylvania Adoption Exchange.

he process is semi-decentralised in that up to ten match attempts

re made against families when each child arrives. By contrast, the

ore centralised process adopted by Coram involves a pool of chil-

ren and families building up over time, leading to the use of a

atching algorithm for the resulting two-sided matching problem.

For more details on the diverse variants of stable matching

roblems, we direct the reader to Manlove (2013) and for an eco-

omic overview of these problems we recommend ( Roth & So-

omayor, 1990 ). 

.4. Layout of the paper 

The rest of the paper is organised as follows. Section 2 defines

he problems that are studied in this paper, and we introduce and

iscuss existing models for these in Section 3 . This is followed by

 theorem and two algorithms for preprocessing instances of SMTI

n order to reduce instance sizes, in Section 4 . Section 5 introduces

ur first new model, which reduces the number of non-zero ele-

ents in the constraint matrix through dummy variables. Further

odels are presented in Section 6 with new stability constraints.

e demonstrate our new models and improvements experimen-

ally in Section 7 and we provide some conclusions in Section 8 . 

. Problem definitions 

In this section we give formal definitions of the three key prob-

ems that we consider in this paper. 

.1. Stable Marriage with Ties and Incomplete Lists 

An instance I of the Stable Marriage problem with Ties and In-

omplete lists ( SMTI ) comprises a set C of n 1 children and a set F of

 2 families, where each child (respectively family) ranks a subset

f the families (respectively children) in order of preference, possi-

ly with ties. We say that a child c ∈ C finds a family f ∈ F acceptable

f f belongs to c ’s preference list, and we define acceptability for a

amily in a similar way. We assume that preference lists are consis-

ent , that is, given a child–family pair ( c , f ) ∈ C × F , c finds f accept-

ble if and only if f finds c acceptable. If c does find f acceptable

hen we call ( c , f ) an acceptable pair . 

A matching M in I is a subset of acceptable pairs such that, for

ach agent a ∈ C ∪ F , a appears in at most one pair in M . If a ap-

ears in a pair of M , we say that a is matched , otherwise a is un-

atched . In the former case, M ( a ) denotes a ’s partner in M , that is,
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f ( c , f ) ∈ M , then M(c) = f and M( f ) = c. We now define stability,

hich is the key condition that must be satisfied by a matching

n I . 

efinition 1. Let I be an instance of SMTI and let M be a matching

n I . A child–family pair ( c , f ) ∈ ( C × F ) \ M is a blocking pair of M , or

locks M , if 

1. ( c , f ) is an acceptable pair, 

2. either c is unmatched in M or c prefers f to M ( c ), and 

3. either f is unmatched in M or f prefers c to M ( f ). 

M is said to be stable if it admits no blocking pair. 

In SMTI, the goal is to find an arbitrary stable matching. We

enote the problem of finding a maximum size stable matching,

iven an instance of SMTI, by MAX-SMTI. 

.2. Globally Ranked Pairs 

An instance I of the Stable Marriage problem with Ties, Incom-

lete lists and Globally-Ranked Pairs ( SMTI-GRP ) comprises a set C

f n 1 children, a set F of n 2 , a subset X ⊆ C × F of acceptable child–

amily pairs, and a weight function w : X −→ R . 

The set of acceptable pairs and the weight function are used

o define the SMTI instance I ′ corresponding to I as follows: for

ny two acceptable pairs ( c , f ) ∈ X and ( c , f ′ ) ∈ X , c prefers f to

 

′ if w (c, f ) > w (c, f ′ ) , and c is indifferent between f and f ′ if

 (c, f ) = w (c, f ′ ) . Preference lists of families are constructed in a

imilar fashion. A stable matching in I can then be defined by ap-

lying Definition 1 to I ′ . 
Given a matching M in I , the weight of M , denoted by w (M) ,

s defined to be 
∑ 

(c, f ) ∈ M 

w (c, f ) . The problem of finding a sta-

le matching of maximum size is called MAX-SMTI-GRP, and the

roblem of finding a stable matching of maximum weight is called

AX-WT-SMTI-GRP. 

Given an instance I of MAX-WT-SMTI-GRP, we can construct

 refined instance I ′ of MAX-WT-SMTI-GRP from I by setting a

hreshold value t with the effect that the acceptable pairs in I ′ are

recisely the acceptable pairs in I which have weight at least t . The

ffect of im posing different threshold values on I is of interest to

oram. 

xample 1. Our first example demonstrates how different thresh-

ld values create instances of SMTI-GRP with differently sized

aximum size stable matchings. Let C = { c 1 , c 2 , c 3 } be a set of chil-

ren, F = { f 1 , f 2 , f 3 } be a set of families, and let the weight func-

ion w be defined by the following table: 

f 1 f 2 f 3 

c 1 95 85 80 

c 2 95 80 80 

c 3 80 45 75 

By taking t = 0 we obtain an instance of SMTI-GRP

n which all pairs are acceptable. In this instance, M 1 =
 (c 1 , f 2 ) , (c 2 , f 1 ) , (c 3 , f 3 ) } is the unique maximum weight sta-

le matching and its weight is 255. However, if we take t = 80

nd construct an instance of SMTI-GRP, then the only acceptable

air that involves c 3 is ( c 3 , f 1 ) and no stable matching can in-

olve c 3 . The unique maximum weight stable matching is then

 2 = { (c 1 , f 2 ) , (c 2 , f 1 ) } , which has a weight of 180. 

xample 2. Our second instance of SMTI-GRP is intended to show

hat a maximum weight stable matching may be smaller in size

han a maximum size stable matching. Let C = { c 1 , c 2 , c 3 , c 4 } , F =
 f 1 , f 2 , f 3 , f 4 } , 
 = { (c i , f i ) : 1 ≤ i ≤ 4 } ∪ { (c i +1 , f i ) : 1 ≤ i ≤ 3 } , 
nd the weight function w be given by the following table: 

f 1 f 2 f 3 f 4 

c 1 1 – – –

c 2 4 4 – –

c 3 – 3 4 –

c 4 – – 4 1 

Let M 1 = { (c i , f i ) : 1 ≤ i ≤ 4 } and M 2 = { (c i +1 , f i ) : 1 ≤ i ≤ 3 } . It

s easy to verify that M 1 and M 2 are both stable matchings. How-

ver w (M 1 ) = 10 and w (M 2 ) = 11 , whereas | M 1 | = 4 and | M 2 | = 3 .

.3. Hospitals/Residents with Ties 

An instance I of the Hospitals/Residents problem with Ties ( HRT )

omprises a set D of n 1 resident doctors and a set H of n 2 hospitals.

ach doctor (respectively hospital) ranks a subset of the hospitals

respectively doctors) in order of preference, possibly with ties. Ad-

itionally, each hospital h has a capacity c h ∈ Z 

+ , meaning that h

an be assigned at most c h doctors, while each doctor is assigned

o at most one hospital. The definitions of the terms consistent and

cceptable are analogous to the SMTI case. 

A matching M in I is a subset of acceptable pairs such that each

octor appears in at most one pair, and each hospital h ∈ H appears

n at most c h pairs. Given a doctor d ∈ D , the terms matched and

nmatched , and the notation M ( d ), are defined as in the SMTI case.

iven a hospital h ∈ H , we let M(h ) = { d ∈ D : (d, h ) ∈ M} . We say

hat h is full or undersubscribed in M if | M(h ) | = c h or | M ( h )| < c h ,

espectively. We next define stability by extending Definition 1 to

he HRT case. 

efinition 2. Let I be an instance of HRT and let M be a matching

n I . A doctor–hospital pair ( d , h ) ∈ ( D × H ) �M is a blocking pair of

 , or blocks M , if 

1. ( d , h ) is an acceptable pair, 

2. either d is unmatched in M or d prefers h to M ( d ), and 

3. either h is undersubscribed in M or h prefers d to some mem-

ber of M ( h ). 

M is said to be stable if it admits no blocking pair. 

As in the SMTI case, the problem of finding a maximum size

table matching, given an instance of HRT, is denoted MAX-HRT. 

While the definition for HRT does allow an arbitrary number

f preferences to be expressed by any doctor, in reality doctors’

reference lists are often short: for example in the SFAS application

ntil 2009, every doctor’s list was of length 6. 

. Existing formulations 

The first mathematical models for SM were proposed in the late

980s independently by Gusfield and Irving (1989) and by Vande

ate (1989) . Rothblum (1992) extended Vande Vate’s model to SMI.

n the following, we show how to extend Rothblum’s model to for-

ulate both MAX-SMTI and MAX-HRT, as was done previously by

wanashie and Manlove (2014) . These existing models for MAX-

MTI and MAX-HRT are described here as they will be extended in

ater sections. 

.1. Mathematical model for MAX-SMTI 

Based on our Coram application, we will adopt the terminology

rom that context when presenting models for MAX-SMTI. When

easoning about models, we will use i and j to represent a child

nd family, rather than c and f , respectively, as i and j are by con-

ention more typically used as subscript variables. Let us consider

he following notation: 
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• F ( i ) is the set of families acceptable for child i (i = 1 , . . . , n 1 ) . 
• C ( j ) is the set of children acceptable for family j ( j = 1 , . . . , n 2 ) .
• r c 

j 
(i ) is the rank of family j for child i , defined as the integer

k such that j belongs to the k th most-preferred tie in i ’s list

(i = 1 , . . . , n 1 , j ∈ F (i )) . The smaller the value of r c 
j 
(i ) , the bet-

ter family j is ranked for child i . 
• r f 

i 
( j) is the rank of child i for family j , defined as the integer k

such that i belongs to the k th most-preferred tie in j ’s list ( j =
1 , . . . , n 2 , i ∈ C( j)) . The smaller the value of r f 

i 
( j) , the better

child i is ranked for family j . 
• F ≤

j 
(i ) is the set of families that child i ranks at the same level or

better than family j , that is, F ≤
j 
(i ) = { j ′ ∈ F : r c 

j ′ (i ) ≤ r c 
j 
(i ) } (i =

1 , . . . , n 1 , j ∈ F (i )) . 
• C ≤

i 
( j) is the set of children that family j ranks at the same level

or better than child i , that is, C ≤
i 
( j) = { i ′ ∈ C : r f 

i ′ ( j) ≤ r f 
i 
( j) } ( j =

1 , . . . , n 2 , i ∈ C( j)) . 

By introducing binary decision variables x ij that take value

1 if child i is matched with family j , and 0 otherwise (i =
1 , . . . , n 1 , j ∈ F (i ) ) , MAX-SMTI can be modelled as follows: 

max 

n 1 ∑ 

i =1 

∑ 

j∈ F (i ) 

x i j (1)

s.t. 
∑ 

j∈ F (i ) 

x i j ≤ 1 , i = 1 , . . . , n 1 , (2)

∑ 

i ∈ C( j) 

x i j ≤ 1 , j = 1 , . . . , n 2 , (3)

1 −
∑ 

q ∈ F ≤
j 
(i ) 

x iq ≤
∑ 

p∈ C ≤
i 
( j) 

x p j , i = 1 , . . . , n 1 , j ∈ F (i ) , (4)

x i j ∈ { 0 , 1 } , i = 1 , . . . , n 1 , j ∈ F (i ) . (5)

The objective function (1) maximises the number of children

assigned. If instead, one wants to maximise the score of the chil-

dren assigned (as in MAX-WT-SMTI-GRP), it is enough to use∑ n 1 
i =1 

∑ 

j∈ F (i ) w i j x i j in the objective function. Constraints (2) ensure

that each child is matched with at most one family and constraints

(3) impose that each family is matched with at most one child. Fi-

nally, constraints (4) enforce stability by ruling out the existence

of any blocking pair. More specifically, they ensure that if child i

is not matched with family j or any other family they rank at the

same level or better than j (i.e., 
∑ 

q ∈ F ≤
j 

(i ) x iq = 0 ), then family j is

matched with a child it ranks at the same level or better than i

(i.e., 
∑ 

p∈ C ≤
i 

( j) x pj ≥ 1 ). 

3.2. Mathematical model for MAX-HRT 

An adaptation of model (1) –(5) for MAX-HRT was proposed in

Kwanashie and Manlove (2014) . It uses the same notation that was

used for MAX-SMTI except that: 

• The term “family” is replaced by “hospital” and F ( i ), r f 
i 
( j) , and

F ≤
j 
(i ) are changed into H ( i ), r h 

i 
( j) , and H 

≤
j 
(i ) , respectively. 

• The term “child” is replaced by “doctor” and C ( j ), r c 
j 
(i ) , and

C ≤
i 
( j) are changed to D ( j ), r d 

j 
(i ) , and D 

≤
i 
( j) , respectively. 

• The capacity of hospital j ( j = 1 , . . . , n 2 ) is denoted by c j . 

By introducing binary decision variables x ij that take value

1 if doctor i is assigned to hospital j , and 0 otherwise (i =

a  
 , . . . , n 1 , j ∈ H(i ) ) , MAX-HRT can be modelled as follows: 

max 

n 1 ∑ 

i =1 

∑ 

j∈ H(i ) 

x i j (6)

s.t. 
∑ 

j∈ H(i ) 

x i j ≤ 1 , i = 1 , . . . , n 1 , (7)

∑ 

i ∈ D ( j) 

x i j ≤ c j , j = 1 , . . . , n 2 , (8)

c j 

⎛ 

⎝ 1 −
∑ 

q ∈ H ≤
j 
(i ) 

x iq 

⎞ 

⎠ ≤
∑ 

p∈ D ≤
i 
( j) 

x p j , i = 1 , . . . , n 1 , j ∈ H(i ) , (9)

x i j ∈ { 0 , 1 } , i = 1 , . . . , n 1 , j ∈ H(i ) . (10)

While the meaning of the objective function and constraints

7) remains the same, constraints (8) ensure now that each hospi-

al does not exceed its capacity. Constraints (9) are the adaptation

f the stability constraints (4) when capacity is considered. More

pecifically, they ensure that if doctor i was not assigned to hospi-

al j or any other hospital they rank at the same level or higher

han j (i.e., 
∑ 

q ∈ H ≤
j 
(i ) x iq = 0 ), then hospital j has filled its capac-

ty with doctors it ranks at the same level or higher than i (i.e.,
 

p∈ D ≤
i 
( j) x pj ≥ c j ). 

.3. Discussion on the models 

Although the model for SM was proposed almost thirty years

go, the computational behaviour of its extension to MAX-SMTI

nd MAX-WT-SMTI-GRP (i.e., in one-to-one instances specifically)

as never been studied, to the best of our knowledge. However, we

ention that our direct implementation of (1) –(5) on real-world

AX-WT-SMTI-GRP instances involving 500 children, 1000 fami-

ies, and a large list of preferences cannot be solved by state-of-

he-art solvers within hours. Indeed, the model becomes too diffi-

ult as it requires up to 50 0,0 0 0 stability constraints, each of them

ncluding | F ≤
j 
(i ) | + | C ≤

i 
( j) | nonzero elements (i.e., up to 1500). 

Regarding MAX-HRT, computational experiments with (6) –(10)

pplied to real-world and randomly generated instances have been

arried out previously ( Diebold & Bichler, 2017; Kwanashie, 2015;

wanashie & Manlove, 2014 ). Kwanashie (2015) observed a signif-

cant increase in terms of average running time when the number

f doctors goes above 400. As our objective is to solve instances of

he magnitude of the UK Foundation Programme application (in-

olving almost 80 0 0 doctors and 50 0 hospitals), the model in its

urrent form is not suitable. 

In the next sections, we introduce various techniques aimed at

educing the size of the two models and strengthening their con-

inuous relaxation. 

. Preprocessing SMTI with ties on both sides 

It is quite common in combinatorial optimisation to use some

imple analysis to fix the optimal value of a subset of variables

nd, thus, reduce the problem size. This is particularly useful for

table matching problems as one variable, one stability constraint,

nd up to n 1 + n 2 non-zero elements are associated with each ac-

eptable pair. Two procedures, “Hospitals-offer” and “Residents-

pply’, have been proposed for removing acceptable pairs that can-

ot be part of any stable matching for HRT when ties only occur

n hospitals’ preference lists ( Irving & Manlove, 2009 ). 

When ties can belong to the preference lists of both sets of

gents, a reduction technique is known for the special case of SMTI
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Algorithm 2 Full-child-preferences. 

1: Input: An instance of SMTI with children C and families F 

2: Output: A set R containing pairs (i, j ′ ) that cannot be part of 

any stable matching 

3: for each child i ∈ C do 

4: F ← ∅ 
5: C ← ∅ 
6: for each j ∈ F (i ) do � for each family in descending order 

of preference 

7: F ← F ∪ { j} 
8: C ← C ∪ { i ′ ∈ C( j) : r f 

i ′ ( j) ≤ r f 
i 
( j) } 

9: if |F| ≥ |C| then 

10: for each j ′ ∈ F (i ) with r c 
j ′ (i ) > max j∈F { r c j (i ) } do 

11: R ← R ∪ { (i, j ′ ) } 
12: end for 

13: break 

14: end if 

15: end for 

16: end for 

17: return R 
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n which preference lists on one side are of length at most two

 Irving et al., 2009 ). However the aforementioned preprocessing al-

orithms are not applicable to arbitrary instances of SMTI. In this

ection we introduce a new sufficient condition to find a set of ac-

eptable pairs that cannot be part of any stable matching for SMTI.

e then propose two greedy algorithms to detect such pairs which

an then be removed from the instance without affecting any sta-

le matching. Our technique is based on the following result. 

heorem 1. Let I be an instance of SMTI. Given a child i and a set

f families F such that for every family j ∈ F , ( i , j ) is an acceptable

air, let C be the set of children that at least one family in F ranks

t the same level or better than i , i.e., C = 

⋃ 

j∈F { C ≤i ( j) } . If |F| ≥ |C| ,
hen in any stable matching M , child i will be matched with a family

 

′ such that r c 
j ′ (i ) ≤ max j∈F { r c j (i ) } . 

roof. Assume for a contradiction that M is a stable matching

n I in which child i is matched with a family j ′ with r c 
j ′ (i ) >

ax j∈F r c j (i ) or is unmatched. Since |F| ≥ |C| > |C \ { i }| , at least

ne family j ′′ ∈ F must be matched with some child i ′ 
∈ C or be

nmatched. Then either i is unmatched or prefers j ′′ to j ′ , and ei-

her j ′′ is unmatched or prefers i to i ′ . In all cases ( i , j ′′ ) blocks M ,

hich is a contradiction. �

There is no obvious efficient way to find, for each child, the

et F that removes the largest number of acceptable pairs from

n instance of SMTI. Instead we present two polynomial-time al-

orithms to find sets that allow a significant number of acceptable

airs to be removed. Algorithm 1 , “first-rank-family”, considers the

lgorithm 1 First-rank-family. 

1: Input: An instance of SMTI with children C and families F 

2: Output: A set R containing pairs (i, j ′ ) that cannot be part of

any stable matching 

3: for each C ∈ P(C) do � for each subset of children in the

powerset P(C) 

4: M C ← ∅ 
5: end for 

6: R ← ∅ 
7: for each family j ∈ F do 

8: C ← { i ∈ C( j) : r f 
i 
( j) = 1 } � the set of children family j

considers equally best 

9: M C ← M C ∪ { j} 
10: end for 

11: for each C ∈ P(C) do 

12: F ← M C 
13: if |F| ≥ |C| then 

14: for each i ∈ C do 

15: for each j ′ ∈ F (i ) with r c 
j ′ (i ) > max j∈F { r c j (i ) } do 

16: R ← R ∪ { (i, j ′ ) } 
17: end for 

18: end for 

19: end if 

0: end for 

21: return R 

rst rank of children for each family j , i.e., the children that j thinks

re the most desirable. Algorithm 2 , “full-child-preferences”, com-

letely analyses the preference lists of the children to find reduc-

ions. Note that each of these algorithms can also be applied to

he preferences of the other set of agents by symmetry to obtain

first-rank-child” and “full-family-preferences”, and that they may 

ach be applied iteratively until no more reductions are possible. 

After initialisation (lines 3–6), Algorithm 1 considers each fam-

ly j in turn, determining the set of children C that family j ranks as

equally) most desirable (line 8) and storing this fact (line 9). Once
his has been recorded, the algorithm searches through all these

tored sets (line 11) to find sets of children C and the set of fami-

ies F which all consider the set C as their (equally) best choice. If

he set of families F is at least as big as the set of children C (line

3) then for each child i ∈ C and each family j ′ ∈ F ( i ) ranked worse

han the worst family in F , we add the pair ( i , j ′ ) to our reduction

et R (lines 14–16). 

As written, Algorithm 1 requires O(2 n 1 n 1 n 2 ) operations, as we

ust iterate over each possible subset of children (in both lines 3

nd 11). However, if we only explicitly store the subsets C and M C 
enerated by lines 7–10, we will obtain at most n 2 subsets C and at

ost n 2 subsets M C . To only store these specific subsets, we need

o quickly look up whether such a set C exists, and create it if it

oes not, before adding a family j to M C . A hashmap is a suitable

ata structure for carrying out these operations, and will reduce

he overall complexity to O(n 1 n 
2 
2 ) . 

Algorithm 2 incrementally builds up the sets F and C for each

hild i . To build F , we simply add each family j from the prefer-

nce list of i in order from most preferable to least (lines 6 and

), considering agents within ties in increasing indicial order. At

ach step, when we have added j , we then add to C all children

hat j finds at least as preferable as i (line 8). By construction

hese satisfy Theorem 1 . Thus, if F is large enough compared to

, we add to our reduction all the pairs ( i , j ′ ) where j ′ ∈ F ( i ) are

he families ranked worse than the worst family in F (lines 9–11).

lgorithm 2 requires O(n 1 n 2 (n 1 + n 2 )) steps as the outer (respec-

ively middle and inner) for each loop is executed O(n 1 ) (respec-

ively O(n 2 ) and O(n 2 ) ) times, and line 8 requires O ( n 1 ) time. 

We note that: (i) this preprocessing is more powerful when

he number of ranks (i.e., groups of tied elements) is high and

hen there are only a few agents in each rank, and (ii) rather than

dding families in descending order of preference, more sophisti-

ated heuristics could find a larger number of reductions at the

ost of a higher time complexity. However, it is worth mentioning

hat our greedy approach works particularly well when there is a

trong correlation between the scores obtained by a given agent

mong the other agents, e.g., if a family is ranked first for a given

hild, it also tends to be ranked highly by other children, which is

he case in our application. We show in Section 7 that the greedy

pproaches given by Algorithms 1 and 2 can significantly reduce

unning times for our SMTI-GRP instances. We also remark that we

id not try to extend Algorithms 1 and 2 to HRT instances with ties

n both sides, as our practical application involving SFAS instances
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allows ties on one side only, and in such a setting we may apply

Algorithms “Hospitals-offer” and “Residents-apply” from Irving and

Manlove (2009) . 

We conclude this section with an example of the application of

Algorithms 1 and 2 . 

Example 3. Let us consider an SMTI instance with 5 families and

4 children with the following preference lists: 

c 1 : ( f 1 f 2 f 3 ) f 4 f 1 : (c 1 c 3 ) c 4 

c 2 : ( f 2 f 3 f 4 ) f 5 f 2 : (c 1 c 2 ) c 4 

c 3 : ( f 1 f 3 f 4 ) f 3 : (c 2 c 3 ) c 1 

c 4 : ( f 1 f 2 f 4 ) f 4 : (c 1 c 2 ) (c 3 c 4 ) 

f 5 : c 2 . 

In this example, child 1 prefers to be matched equally with

families 1, 2, and 3. If his first choice is not granted, then child

1 prefers to be matched with family 4. 

We start by running “first-rank-child”, but we see that no two

children share the same common set of families as their first pref-

erence, so no acceptable pair is removed. We then run “first-rank-

family”, which highlights that both f 2 and f 4 have the same pair of

children as their equally-first choice ( c 1 and c 2 ). This tells us that

children c 1 and c 2 will never be matched with a family that they

prefer less than both f 2 and f 4 . Therefore, there is no need for c 2 
to ever consider f 5 . This leaves the following preferences. 

c 1 : ( f 1 f 2 f 3 ) f 4 f 1 : (c 1 c 3 ) c 4 

c 2 : ( f 2 f 3 f 4 ) f 2 : (c 1 c 2 ) c 4 

c 3 : ( f 1 f 3 f 4 ) f 3 : (c 2 c 3 ) c 1 

c 4 : ( f 1 f 2 f 4 ) f 4 : (c 1 c 2 ) (c 3 c 4 ) . 

As the instance was reduced, we could now re-run “first-rank-

child” to see if any further reductions are to be found. However,

no more reductions will be found, and so we move on to “full-

child-preferences” and “full-family-preferences”. We demonstrate

the former on child c 1 to obtain the following sequence of sets F
and C: 

F = { f 1 } C = { c 1 , c 3 } 
F = { f 1 , f 2 } C = { c 1 , c 2 , c 3 } 
F = { f 1 , f 2 , f 3 } C = { c 1 , c 2 , c 3 } . 
As |F| ≥ |C| , we know that c 1 cannot be matched with a fam-

ily that c 1 would rank as worse than the worst family in F . This

means that c 1 will never consider f 4 , so the acceptable pair ( c 1 , f 4 )

can be removed, leaving the following reduced instance. 

c 1 : ( f 1 f 2 f 3 ) f 1 : (c 1 c 3 ) c 4 

c 2 : ( f 2 f 3 f 4 ) f 2 : (c 1 c 2 ) c 4 

c 3 : ( f 1 f 3 f 4 ) f 3 : (c 2 c 3 ) c 1 

c 4 : ( f 1 f 2 f 4 ) f 4 : c 2 (c 3 c 4 ) . 

Since we did reduce the instance, it is possible that re-running

one of the other algorithms might reduce the instance even fur-

ther, but in this particular instance no more reductions can be

found. 

5. Reducing the number of non-zero elements 

Even if the reduction procedures previously described remove

a significant number of acceptable pairs, the models involved in

real-world instances remain too large to be solved by state-of-the-

art ILP solvers. There are O ( n 1 n 2 ) constraints and variables and up

to O (n 1 n 2 (n 1 + n 2 )) non-zero elements, depending on the length

of the agents’ preference lists. In this section, we propose an al-

ternative formulation for MAX-SMTI that uses dummy variables to
eep track of the children’s and families’ assignments at each rank

o that the overall number of non-zero elements is reduced. Let us

onsider the following additional notation: 

• g c (i ) is the number of distinct ranks (or ties) for child i (i =
1 , . . . , n 1 ) . 

• g f ( j) is the number of distinct ranks for family j ( j = 1 , . . . , n 2 ) .
• F = 

k 
(i ) is the set of families acceptable for child i (i = 1 , . . . , n 1 )

with rank k (k = 1 , . . . , g c (i ) ) . 
• C = 

k 
( j) is the set of children acceptable for family j ( j =

1 , . . . , n 2 ) with rank k (k = 1 , . . . , g f ( j) ) . 

In addition, we introduce the dummy binary decision variables

 

c 

ik 
(respectively, y f 

jk 
) that take value 1 if child i (respectively, family

 ) is matched with a family (respectively, a child) of rank at most

 , and 0 otherwise (i = 1 , . . . , n 1 , k = 1 , . . . , g c (i ) ) (respectively, j =
 , . . . , n 2 , k = 1 , . . . , g f ( j) ) . Variables y c 

ik 
and y f 

jk 
can be seen as a

eplacement of the summations of x iq and x pj over the sets F ≤
j 
(i )

nd C ≤
i 
( j) . These variables have certain similarities with the cut-off

cores for the college admission problem ( Ágoston et al., 2016 ) and

he radius formulation for the p -median problem ( García, Labbé, &

arín, 2011 ). 

The new formulation for MAX-SMTI is: 

max 

n 1 ∑ 

i =1 

y c i,g c (i ) (11)

s.t. 
∑ 

j∈ F = 
1 

(i ) 

x i j = y c i 1 , i = 1 , . . . , n 1 , (12)

∑ 

j∈ F = 
k 

(i ) 

x i j + y c i,k −1 = y c ik , i = 1 , . . . , n 1 , k = 2 , . . . , g c (i ) , (13)

∑ 

i ∈ C = 
1 
( j) 

x i j = y f 
j1 

, j = 1 , . . . , n 2 , (14)

∑ 

i ∈ C = 
k 
( j) 

x i j + y f 
j,k −1 

= y f 
jk 
, j = 1 , . . . , n 2 , k = 2 , . . . , g f ( j) , 

(15)

1 − y c ik ≤ y f 
j,r f 

i 
( j) 

, i = 1 , . . . , n 1 , k = 1 , . . . , g c (i ) , j ∈ F = k (i ) , 

(16)

x i, j ∈ { 0 , 1 } , i = 1 , . . . , n 1 , j ∈ F (i ) , (17)

y c ik ∈ { 0 , 1 } , i = 1 , . . . , n 1 , k = 1 , . . . , g c (i ) , (18)

y f 
jk 

∈ { 0 , 1 } , j = 1 , . . . , n 2 , k = 1 , . . . , g f ( j) . (19)

The objective function (11) now uses the last y c 
ik 

variable for

ach child (i.e., the one associated with its last rank) as an indi-

ator of whether the child is assigned to a family. First, we note

hat even if (11) uses fewer non-zero elements than (1) , both ob-

ective functions are equivalent. Second, the version of (1) that

onsiders the weight of each pair should be used to solve MAX-

T-SMTI-GRP as (11) cannot be adapted for the problem. Con-

traints (12) –(15) maintain the coherence of variables y c 
ik 

and y f 
jk 

.

onstraints (16) ensure the stability of the matching by using the

ew variables: if child i was not matched with a family of rank k

r better (i.e., 1 − y c 
ik 

= 1) , that means that all families that child

 ranks at level k were already matched with a child of better or

qual rank (i.e., y f 
j,r c 

i 
( j) 

≥ 1 ∀ j ∈ F = 
k 

(i ) ). Finally, by imposing binary

alues, constraints (18) and (19) prevent any child or family from

eing matched more than once. Note that the model would also be
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alid if variables y c 
ik 

and y f 
jk 

were defined as continuous. However,

reliminary experiments showed that it was not beneficial to do

o. 

Model (11) –(19) requires O ( 
∑ n 1 

i =1 
g c (i ) + 

∑ n 2 
j=1 

g f ( j) ) additional

ariables. It still uses O ( n 1 n 2 ) stability constraints, but they now

nvolve only two variables, which reduces the overall size of the

odel. 

By adopting similar notation for MAX-HRT, where g d (i ) is the

umber of ranks (or ties) for doctor i (i = 1 , . . . , n 1 ) , g h ( j) is the

umber of ranks (ties) for hospital j ( j = 1 , . . . , n 2 ) , y 
d 

ik 
is a binary

ecision variable that takes the value 1 if and only if doctor i is

ssigned to a hospital of rank at most k , and y h 
jk 

is an integer de-

ision variables indicating how many doctors of rank at most k are

ssigned to hospital j , MAX-HRT becomes: 

max 

n 1 ∑ 

i =1 

y d 
i,g d (i ) 

(20) 

s.t. y h 
j g h ( j ) 

≤ c j , j = 1 , . . . , n 2 , (21) 

c j (1 −y d ik ) ≤ y h 
j,r h 

i 
( j) 

, i = 1 , . . . , n 1 , k = 1 , . . . , g d (i ) , j ∈ H 

= 
k (i ) ,

(22) 

y h jk ∈ Z 

+ , j = 1 , . . . , n 2 , k = 1 , . . . , g h ( j) , (23) 

(12) –(15) , (17) , (18) , 

here (12) –(15) and (17) , (18) are appropriately modified to follow

RT notation. 

. Alternative stability constraints 

While dummy variables reduce the number of non-zero ele-

ents involved in the stability constraints, we introduce in this

ection some additional techniques that influence the number of

tability constraints and the quality of the continuous relaxations

f the models. It is well-known that the performance of an inte-

er model depends not only on its size, but also on its linear re-

axation. It was shown in the literature that for several problems

see, e.g., the Bin Packing Problem, Delorme, Iori, & Martello, 2016 ;

r the Resource-Constrained Project Scheduling Problem, Koné, Ar-

igues, Lopez, & Mongeau, 2011 ), it may be beneficial to use larger

odels if they have a better continuous relaxation (i.e., closer to

he optimal solution). 

.1. Reduced stability constraints for MAX-SMTI 

.1.1. Constraint merging 

Model (11) –(19) can be further reduced by merging, for a given

hild, all stability constraints with the same rank. Constraints

16) now become 

 F = k (i ) | (1 − y c ik ) ≤
∑ 

j∈ F = 
k 

(i ) 

y f 
j,r f 

i 
( j) 

, i = 1 , . . . , n 1 , k = 1 , . . . , g c (i ) . 

(24) 

his transformation reduces the size of the model, as it uses only

 ( 
∑ n 1 

i =1 
g c (i ) ) stability constraints. However, as will be shown in

he computational experiments section, it also leads to a deteri-

ration of the continuous relaxation bound. We note that the re-

uction in terms of size with respect to model (11) –(19) is more

ignificant when the number of ranks (i.e., tie groups) is low. 

.1.2. Double stability constraints 

To compensate for the degradation of the continuous relaxation

aused by the constraint merging, it is possible to use the addi-

ional stability constraints 
 C = k ( j) | (1 − y f 
jk 
) ≤

∑ 

i ∈ C = 
k 
( j) 

y c i,r c 
j 
(i ) , j = 1 , . . . , n 2 , k = 1 , . . . , g f ( j) . 

(25) 

hese constraints can be seen as the counterparts of (24) when

he merging is performed on the families instead of the children.

hese additional constraints improve the quality of the continuous

elaxation with respect to the model that uses only (24) . Overall,

e observe a tradeoff between the number of stability constraints

sed in the model and the quality of the bound obtained by the

ontinuous relaxation. 

.2. New stability constraints for MAX-HRT 

For MAX-HRT, merging constraint (22) is not useful if there are

o ties on the doctors’ side (i.e., if | H 

= 
k 
(i ) | = 1 , i = 1 , . . . , n 1 , k =

 , . . . , g d (i ) ) . As our practical case allows ties on the hospitals’ side

nly, it is not an improvement we explored. In this section, we pro-

ose instead an enriched formulation for MAX-HRT that allows us

o define a second set of stability constraints. We introduce new

inary decision variables z jk that take value 1 if hospital j has filled

ntirely its capacity with doctors of rank at most k − 1 , and 0 oth-

rwise ( j = 1 , . . . , n 2 , k = 1 , . . . , g h ( j) + 1) . An additional set of sta-

ility constraints for MAX-HRT is: 

 i j ≤ 1 − z j,r h 
i 
( j) , i = 1 , . . . , n 1 , j ∈ H(i ) , (26) 

 jk ≥ z j,k −1 , j = 1 , . . . , n 2 , k = 2 , . . . , g h ( j) + 1 , (27) 

 − z jk ≤ y d 
i,r d 

j 
(i ) 

, j = 1 , . . . , n 2 , k = 2 , . . . , g h ( j) + 1 , i ∈ D 

= 
k −1 ( j) ,

(28) 

 j z j,g h ( j) +1 ≤ y h 
j,g h ( j) 

, j = 1 , . . . , n 2 , (29) 

 jk ∈ { 0 , 1 } , j = 1 , . . . , n 2 , k = 1 , . . . , g h ( j) + 1 . (30) 

Constraints (26) ensure that a doctor can only be assigned to

 hospital that is not already filled by doctors that the hospital

trictly prefers. Constraints (27) ensure that, if a hospital is full for

octors of rank at most k − 1 , then it is also full for doctors of

ank at most k . Constraints (28) ensure that the matching is stable

y ruling out the existence of any blocking pair. More specifically,

28) ensure that, if a hospital j has space for doctors of rank k (i.e.,

 jk = 0 ), then all doctors i of the hospital with rank k − 1 were al-

eady accepted in j or in a hospital they consider equal or better

han j (i.e., y d 
i,r d 

j 
(i ) 

= 1 ). Finally, constraints (29) ensure that if the

ospital is full ( z j,g h ( j) +1 = 1 ), then it has c j doctors assigned to it

 y h 
j,g h ( j) 

≥ c j ). 

As ties occur on the hospital side, constraint merging can be

pplied to (28) to obtain: 

 D 

= 
k −1 ( j) | (1 − z jk ) ≤

∑ 

i ∈ D = 
k −1 

( j) 

y d 
i,r d 

j 
(i ) 

, 

j = 1 , . . . , n 2 , k = 2 , . . . , g h ( j) + 1 . (31) 

Note that both sets of stability constraints (22) and (26) –(30)

an be used at the same time. Moreover, stability constraints 

 j z jk ≤ y h j,k −1 , j = 1 , . . . , n 2 , k = 2 , . . . , g h ( j) + 1 , (32) 

tating that if a given hospital j has no room for doctors at rank

 (i.e., z jk = 1 ), then it has already selected c j doctors of rank at

ost k − 1 (i.e., y h 
j,k −1 

≥ c j ), could be used to replace (22) . Indeed,

et us consider a doctor i , a hospital j , and their respective ranks

 

d 
j 
(i ) = m and r h 

i 
( j) = p. By (28) , we know that 

 − z j,p+1 ≤ y d im 

, (33) 
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Table 2 

Summary of the experiments. 

Problem Table Dataset Purpose 

#Inst. Source 

MAX-WT-SMTI-GRP 3 22 Coram Impact of dummy var. and alternative stability cons. 

4 22 Coram Impact of preprocessing, warm start, and priorities 

5 220 Randomly generated Models’ limits 

MAX-SMTI 6–8 270 Randomly generated Impact of dummy var. and alternative stability cons. 

MAX-HRT non master 9 3 SFAS Impact of dummy var. and alternative stability cons. 

10 700 Randomly generated Impact of dummy var. and alternative stability cons. 

11 150 Randomly generated Models’ limits 

12 60 Randomly generated Impact of preprocessing, warm start, and priorities 

MAX-HRT master 13 450 Randomly generated Difference between the initial and the best model 
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which can be rewritten as 

c j (1 − y d im 

) ≤ c j z j,p+1 . (34)

This can be completed by (32) to obtain 

c j (1 − y d im 

) ≤ c j z j,p+1 ≤ y h jp , (35)

which leads to constraints (22) being redundant. Notice that while

we count O ( n 1 n 2 ) stability constraints (22) , only O ( 
∑ n 2 

j=1 
g h ( j) ) are

required for (32) . 

7. Computational experiments 

We report in this section the outcome of extensive compu-

tational experiments aimed at testing the effectiveness of the

proposed improvements for MAX-WT-SMTI-GRP, MAX-SMTI, and

MAX-HRT. All algorithms were coded in C++ , and Gurobi 7.5.2

was used to solve the ILP models. The implemented software

is downloadable from the online repository https://dx.doi.org/10.

5281/zenodo.2538150 . The experiments were run on an Intel Xeon

E5-2687W v3, 3.10 gigahertz with 512 gigabytes of memory, run-

ning under Linux 4.13.0. Each instance was run using a single core

and had a total time limit (comprising model creation time and so-

lution time) of 3600 seconds per problem instance. The instances

that were randomly generated are downloadable from the online

repository https://dx.doi.org/10.5525/gla.researchdata.664 . 

For each problem, a first set of experiments determined what

combination of the improvements proposed in Sections 5 and 6 is

the most effective. At a second stage, we reran a subset of these

combinations to evaluate the impact of other features (such as

preprocessing, branching priorities, and warm start). Experimental

evaluations of the algorithms for MAX-WT-SMTI-GRP, MAX-SMTI,

and MAX-HRT are presented in Sections 7.1, 7.2 , and 7.3 respec-

tively. A summary of the experiments reported in this section is

presented in Table 2 . For each experiment, the table identifies the

problem solved, the subsequent tables containing the results, the

dataset used (number of instances and source), and the experi-

mental objectives. We show that dummy variables are particularly

useful for MAX-WT-SMTI-GRP, constraint merging is beneficial for

MAX-SMTI, and the new set of stability constraints substantially

improves the performance of MAX-HRT. A more detailed discussion

of these results can be found in Section 7.4 

7.1. MAX-WT-SMTI-GRP 

7.1.1. Real-world instances 

We were provided with a sample set of data representing

550 children and 894 families, which included a weight (deter-

mined by Coram) for every child–family pair. Since most of the

weights vary between 80 and 100, for each integer threshold in
 0 , 80 , 81 , . . . , 100 } , we created an instance of SMTI-GRP as de-

cribed in Section 2 , resulting in 22 instances. When the thresh-

ld is set to 0, all child–family pairs are acceptable, and so tech-

ically we have complete rather than incomplete preference lists.

ur models are still applicable to such instances. 

The sample dataset contained a significant number of ties. One

ay to measure the density of ties in an SMTI or HRT instance is

ow described. Given an instance of SMI (i.e., with no ties), an in-

tance of SMTI can be created as follows. For each set of agents

ick a tie density t d with 0 ≤ t d ≤ 1 (i.e., so the children and fami-

ies may have distinct tie densities). Then let any two consecutive

lements in any preference list from this set of agents be tied with

robability t d (0 ≤ t d ≤ 1) ( Kwanashie & Manlove, 2014 ). We reverse

his procedure here, taking a real-world instance and calculating

hat proportion of ties exist on each side of it using the following

rocess. First, count the number of distinct tie groups g and the

umber of actual elements e in the preference lists on one side,

nd let n be the number of agents on that side that have at least

ne agent in their preference list. The tie density of that side is

hen given by t d = 1 − g−n 
e −n . Subtracting n from the numerator en-

ures that if the agents consider all possibilities equally, we obtain

 tie density of 1, and subtracting n from the denominator ensures

hat an absence of ties equates to a density of 0. Note that e > n is

ssumed, that is, at least one agent has more than two agents in

ts preference list. If e = n, the instance is trivial to solve. 

Through this formula, the tie density is 0.9716 for the families

nd 0.9705 for the children. Among the problem instances gener-

ted in Kwanashie and Manlove (2014) , it was found that those

ith a tie density t d ≈ 0.85 tended to be the most challenging to

olve. 

For a given child or family, the variance of weights is rela-

ively low: 3.8 on average for the children and 3.7 for the families.

his suggests that some children are considered “good” or “bad”

atches for many families, and vice-versa. 

Each of the almost half a million child–family pairs is given a

eight, but there are only 54 distinct weights in total. A bar chart

isplaying these weights is shown in Fig. 2 where we observe two

istinct behaviours: some values appear many times (we will call

hem “common”) and some values appear just a few times in com-

arison (we will call them “uncommon”). 

We examine our improvements to the models on the 22 SMTI-

RP real-world instances generated from the sample data set with

he different thresholds. In all methods we considered, the pre-

rocessing described in Section 4 was applied. Table 3 compares

he six possible combinations of the proposed improvements. The

Method” columns detail the combination of options, with some

ttributes describing the specific implementation: “index” iden-

ifies the method while “dummy variables”, “stability constraint

erging”, and “double stability constraints” indicate the inclusion

r otherwise of the corresponding feature in the model. The three

https://dx.doi.org/10.5281/zenodo.2538150
https://dx.doi.org/10.5525/gla.researchdata.664
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Fig. 2. Bar chart of the child–family weights for the complete instance. 

Table 3 

Comparison of the proposed methods for preprocessed SMTI-GRP real-world instances. 

Method Values Model size 

Index Dummy 

variables 

Stab. cons. 

merging 

Double 

stab. cons. 

#Opt Time Continuous 

relaxation 

Number of 

variables 

Number of 

constraints 

Number of 

non-zeros 

M1 21 434 .0 42966.0 94,764 96,208 39,152,977 

M2 x 22 86 .8 42966.0 101,220 101,220 390,790 

M3 x 20 416 .3 43030.4 94,764 3457 13,619,285 

M4 x x 22 73 .7 43030.4 101,220 8468 298,038 

M5 x x 20 722 .0 43010.0 94,764 7899 39,853,723 

M6 x x x 22 66 .2 43010.0 101,220 12,911 397,245 
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ollowing columns give some indicators of the performance of each

ethod: the number of optimal solutions found, average CPU time

ver all runs (including the ones terminated by the time limit),

nd the continuous relaxation value. The three last columns report

ome details about the model size: average number of variables,

onstraints, and non-zeros elements. 

The table shows a number of interesting facts: 

• The real-world instances did not challenge our algorithms as

even the basic model M1, (introduced in Kwanashie & Manlove,

2014 ) solves 21 out of the 22 instances. 
• Only the algorithms using dummy variables solve all the real-

world instances. Algorithms using dummy variables are one or-

der of magnitude faster than those that do not (e.g., 434 sec-

onds on average for M1 versus 86.8 for M2). This is probably

due to the decrease by two orders of magnitude in the average

number of non-zero elements. 
• Merging stability constraints seems to have a positive effect

in terms of CPU time (434 seconds on average for M1 versus

416.3 for M3, and 86.8 seconds for M2 versus 73.7 for M4),

but it remains marginal compared to the use of dummy vari-

ables. While using this feature worsens the continuous relax-

ation value (e.g., from 42 966 for M1 to 43 030.4 for M3), it also

decreases the model size (e.g., from 96 208 constraints for M1

to 3457 for M3). 
• Provided that constraint merging is used, it is unclear if using

double stability constraints is beneficial: while it increases the

average time from 416.3 seconds for M3 to 722 for M5, it also

decreases the average time from 73.7 seconds for M4 to 66.2 for

M6. In contrast to constraint merging, the use of double stabil-

ity constraints improves the continuous relaxation value at the
expense of increasing the model size.  
Supplementary experiments showed that, by dropping the sta-

ility constraints, the optimal objective value of our MAX-WT-

MTI-GRP real-world instances would increase by 3% on average

with a minimum of 0% and a maximum of 18%). Without stability

onstraints, the problem can be solved in polynomial time within

econds ( Gabow & Tarjan, 1989 ). 

Table 4 studies the impact of the preprocessing discussed in

ection 4 , the use of the Gale–Shapley algorithm ( Gale & Shapley,

962 ) to give a warm-start to the solver, and the use of priori-

ies on the dummy variables during the branch-and-bound process.

e tested these features on the basic model (M1), and one of the

astest algorithms (M4). We selected M4 because it obtained very

ood results while keeping a relatively low number of variables,

onstraints, and non-zero elements. In our experiments involving a

arm start, we called the Gale–Shapley algorithm 100 times after

reaking ties randomly, and fed the solver with the best solution

ound. 

The results in Table 4 show that: 

• Without preprocessing, the basic model M1 can only solve 6

out of 22 instances. 
• Preprocessing leads to the removal of more than half of the

variables, about half of the constraints, and more than half of

the non-zero elements, both for models M1 and M4. 
• Applying Gale–Shapley algorithm is useful as it reduces the av-

erage CPU time of M1 from 434 seconds to 288.9 and the aver-

age CPU time of M4 from 73.7 seconds to 59.2. 
• Giving a high priority to the dummy variables y c 

ik 
and y f 

jk 
during

the branching process of M4 does not help the solver. As this

feature did not seem promising, we decided not to try further

combinations of M4. We also mention that since M1 does not
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Table 4 

Comparison of M1 and M4 with additional features for SMTI-GRP real-world instances. 

Method Values Model size 

Index Preprocessing Warm 

start 

Dummy variables 

priorities 

#Opt Time Number of 

variables 

Number of 

constraints 

Number of 

non-zeros 

M1 6 1325 .0 237,666 239,110 162,252,108 

M1 x 21 434 .0 94,764 96,208 39,152,977 

M1 x x 21 288 .9 94,764 96,208 39,152,977 

M4 22 155 .4 248,442 15,689 738,240 

M4 x 22 73 .7 101,220 8468 298,038 

M4 x x 22 59 .2 101,220 8468 298,038 

M4 x x 22 76 .7 101,220 8468 298,038 

Table 5 

Comparison of the methods for preprocessed SMTI-GRP augmented instances. 

Index κ = 1 κ = 2 

#Opt Time Cont. relax. nb. var. nb. cons. nb. nzs. #Opt Time Cont. relax. nb. var. nb. cons. nb. nzs. 

M1 220 340 .6 45460 .0 63,974 65,418 21,214,917 74 2701 .5 92341 .5 358,549 361,437 278,330,845 

M2 220 114 .8 45460 .0 72,542 72,542 271,809 121 2185 .1 92341 .5 379,695 379,695 1,473,987 

M3 220 201 .5 45494 .8 63,974 3770 6,742,990 52 2962 .5 92476 .6 358,549 8865 94,883,495 

M4 220 84 .0 45494 .8 72,542 10,894 210,162 134 2114 .1 92476 .6 379,695 27,122 1,121,414 

M5 220 507 .9 45484 .5 63,974 10,012 21,874,731 43 3046 .8 92450 .1 358,549 24,034 282,418,566 

M6 220 55 .9 45484 .5 72,542 17,136 280,377 143 2106 .7 92450 .1 379,695 42,291 1,495,132 
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have dummy variables, the model could not be used to test this

feature. 

7.1.2. Augmented instances 

As all real-world instances could be solved within an hour by

the best method, we generated bigger instances to test the limits

of our models. In order to keep the properties of the original in-

stance, we used it as a basis to create the new benchmark. 

We started by duplicating each child and each family κ times.

Then, we perturbed the weight obtained by each pair in the fol-

lowing way: (1) identify the group of the weight (common or un-

common) and the position i of the weight in that group, and (2),

change the weight to the one in position i + x with probability p ( x )

for (x, p(x )) ∈ { (−2 , 0 . 1) , (−1 , 0 . 2) , (0 , 0 . 4) , (1 , 0 . 2) , (2 , 0 . 1) } . 
For each κ ∈ {1, 2}, we generated 10 instances, to which we ap-

plied the 22 thresholds, resulting in 440 new instances in total.

Table 5 compares the six possible combinations of the proposed

improvements, with preprocessing, on the 440 augmented SMTI-

GRP instances. 

We observe that the comments made about the real-world in-

stances are still valid here: using dummy variables reduces signifi-

cantly the number of non-zero elements and improves the perfor-

mance of the model. Constraint merging seems to have a positive

effect, especially when used together with dummy variables. The

same behaviour is observed for double stability constraints. Over-

all, we notice a clear improvement from the basic model M1 to

the more sophisticated model M6, as the former could only solve

74 out of the 220 instances with κ = 2 , while the latter could solve

143 of them. Despite this remarkable improvement, some instances

with κ = 2 (i.e., with 1100 children and 1788 families) remain un-

solved after one hour of computing time. We also generated in-

stances with κ = 3 , but running these experiments was impractical

due to the large memory requirements of the models. 

7.2. MAX-SMTI 

Even though we initially developed our models for MAX-WT-

SMTI-GRP, they can also be used to solve MAX-SMTI. As, to the

best of our knowledge, no MAX-SMTI datasets are available in the

literature, we used the generator described in Irving and Manlove

(2009) to create new instances in order to test the effectiveness of
ur methods on this problem too. We tried several combinations of

umber of agents ({10 0 0 0, 25 0 0 0, 50 0 0 0} on each side), tie den-

ity ({0.75, 0.85, 0.95} on each side), and preference list length ({3,

, 10} on one side, as the generator does not support a limit on the

reference list lengths on both sides). We generated 10 instances

or each combination resulting in 270 SMTI instances in total. 

Tables 6–8 compare the six possible combinations of the pro-

osed improvements, with preprocessing, on the 270 random SMTI

nstances. 

We observe that: 

• As expected, for a given tie density and preference list length,

a larger number of agents results in harder instances. 
• For a given number of agents and a given preference list length,

instances with a tie density at 0.75 are harder than those at

0.85, which are themselves harder than those at 0.95. This

could be explained by the fact that the difference between the

continuous relaxation and the optimal solution size is smaller

as the tie density increases. For example, for M1 with 25,0 0 0

agents and a preference list length of 3, we observed an aver-

age absolute difference between the two values of 5.07 when

the tie density was 0.75, 2.81 when the tie density was 0.85,

and 0.15 when the tie density was 0.95. 
• For a given number of agents and tie density, shorter preference

lists make the instances easier. This is probably due to the fact

that the models have fewer variables, constraints, and non-zero

elements. 
• Once again, the effectiveness of the new models is demon-

strated: out of the 30 instances with preference list length of

5 and 50,0 0 0 agents, M1 solves 20 instances in total while M3

solves all 30 instances. 
• For each combination, the best results were obtained either by

M3 or by M4. We distinguish several cases: 

– When the preference list length is equal to 3, M3 is always

the best. Indeed, the preference lists are too short to obtain

any benefit from the dummy variables. For example: 
• For tie density 0.85, preference list length of 3, and

25,0 0 0 agents, M3 (resp. M4) has on average 72,227 vari-

ables (resp. 133,976), 81,322 constraints (resp. 93,071),

and 408,556 non-zero elements (resp. 322,817, i.e., 21%

less). 
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Table 6 

Comparison of the methods for preprocessed SMTI instances with 10,0 0 0 agents. 

Index Preference list length = 3 Preference list length = 5 Preference list length = 10 

0.75 0.85 0.95 0.75 0.85 0.95 0.75 0.85 0.95 

#Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time 

M1 10 10 10 8 10 8 10 155 10 94 10 39 0 3600 4 3428 10 382 

M2 10 11 10 9 10 7 10 361 10 134 10 24 0 3600 0 3600 10 288 

M3 10 5 10 5 10 5 10 75 10 38 10 23 9 2731 9 1555 10 490 

M4 10 10 10 9 10 7 10 150 10 43 10 18 1 3543 10 1723 10 95 

M5 10 10 10 8 10 8 10 115 10 74 10 41 0 3601 10 2073 10 525 

M6 10 10 10 8 10 6 10 442 10 163 10 29 0 3600 0 3600 10 496 

Table 7 

Comparison of the methods for preprocessed SMTI instances with 25,0 0 0 agents. 

Index Preference list length = 3 Preference list length = 5 Preference list length = 10 

0.75 0.85 0.95 0.75 0.85 0.95 0.75 0.85 0.95 

#Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time 

M1 10 65 10 53 10 45 10 1424 10 686 10 199 0 3600 0 3601 4 3439 

M2 10 61 10 48 10 35 6 3329 10 928 10 144 0 3600 0 3600 6 3310 

M3 10 23 10 24 10 23 10 583 10 230 10 117 0 3600 0 3601 3 3234 

M4 10 56 10 46 10 32 10 1527 10 344 10 89 0 3600 0 3600 10 739 

M5 10 55 10 46 10 38 10 873 10 429 10 170 0 3601 0 3601 7 2960 

M6 10 54 10 44 10 31 0 3600 10 1449 10 156 0 3600 0 3600 0 3600 

Table 8 

Comparison of the methods for preprocessed SMTI instances with 50,0 0 0 agents. 

Index Preference list length = 3 Preference list length = 5 Preference list length = 10 

0.75 0.85 0.95 0.75 0.85 0.95 0.75 0.85 0.95 

#Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time #Opt Time 

M1 10 230 10 202 10 146 0 3600 10 2565 10 523 0 3601 0 3601 0 3601 

M2 10 239 10 209 10 146 0 3600 2 3336 10 407 0 3600 0 3600 0 3601 

M3 10 74 10 78 10 73 10 1966 10 828 10 291 0 3601 0 3601 0 3602 

M4 10 220 10 187 10 134 0 3600 10 1046 10 220 0 3600 0 3600 10 2132 

M5 10 212 10 185 10 142 10 2684 10 1227 10 339 0 3597 0 3601 0 3603 

M6 10 209 10 190 10 132 0 3600 0 3600 10 401 0 3600 0 3600 0 3600 
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– When the preference list length is equal to 5, M3 is always

the best for tie densities 0.75 and 0.85 while M4 is always

the best for tie density 0.95. This could be explained by the

fact that high tie densities involve fewer tie groups. Thus,

fewer additional constraints and variables are required by

the dummy variables and using them saves more non-zero

elements. For example: 
• For tie density 0.85, preference list length of 5, and

25,0 0 0 agents, M3 (resp. M4) has on average 119,551

variables (resp. 196,273), 88 448 constraints (resp.

115,171), and 875,334 non-zero elements (resp. 500,736,

i.e., 43% less). 
• For tie density 0.95, preference list length of 5,

and 25 , 0 0 0 agents, M3 (resp. M4) has on average

124,223 variables (resp. 183,693), 79,797 constraints

(resp. 89,267), and 965,056 non-zero elements (resp.

471,574, i.e., 51% less). 

– When the preference list length is equal to 10, M3 is the

best for tie density 0.75, while M4 is the best for tie den-

sities 0.85 and 0.95. Again, the use of dummy variables is

shown to be beneficial with longer preference lists. 

We also report that additional computational experiments

howed that: (i) the preprocessing techniques introduced in

ection 4 have little effect on these instances, and (ii) dropping

he stability constraints would increase the size of the matching

y at most 1% and make the problem polynomial-time solvable

 Hopcroft & Karp, 1973 ). 
.3. MAX-HRT 

In many instances of SMTI and HRT, it can be assumed that

gents establish their ranking based on their own individual pref-

rences. However, sometimes it is the case that agents’ preferences

re formulated on the basis of objective criteria. For example, in a

pecific version of MAX-HRT, hospitals only consider the grades of

he doctors for their preference lists. In this situation, the so-called

aster list , a ranking of all the doctors based on their grades, is

ade at the beginning. The preference list of each hospital is then

n exact copy of the master list from which the doctors who did

ot apply to the given hospital were removed. We tested our algo-

ithms on instances both with and without a master list of doctors.

.3.1. Non master list instances 

We had access to instances of the Scottish Foundation Alloca-

ion Scheme, which assigned medical graduates to Scottish hospi-

als, for the years 20 06, 20 07, and 20 08 ( Irving & Manlove, 20 09 ).

hese 3 instances, called “SFAS” in the following, have respectively

59, 781 and 748 doctors, 53, 53 and 52 hospitals, and 801, 789

nd 752 available positions. Doctors chose exactly 6 hospitals, al-

hough a small number of exceptions with shorter preference lists

ere found. No master list was used by the hospitals to establish

heir preference lists, even if we observed a tendency for some

octors to be often well (or badly) ranked. The tie density on the

ospitals’ side was 0.9468, 0.7861 and 0.8424 respectively. The tie

ensity on the doctors’ side was 0 as the doctors were asked to

rovide strict preferences. 
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Table 9 

Comparison of the proposed methods for preprocessed HRT SFAS instances. 

Method Values Model size 

Index Dummy 

variables 

Stability constraints Stab. cons. 

merging 

#Opt Time Continuous 

relaxation 

Number of 

variables 

Number of 

constraints 

Number of 

non-zeros 

N1 (22) 3 144 .8 747.4 1898 2714 63,272 

N2 x (22) 3 18 .7 747.4 4146 4146 11,278 

N3 (26) –(30) 3 10 .1 744.5 2300 5014 16,495 

N4 x (26) –(30) 3 9 .6 744.5 4548 6446 15,879 

N5 (26) –(30) (28) → (31) 3 15 .9 747.8 2300 3465 14,946 

N6 x (26) –(30) (28) → (31) 3 12 .8 747.8 4548 4897 14,330 

N7 (22) and (26) –(30) 3 16 .1 744.3 2300 6912 75,971 

N8 x (22) and (26) –(30) 3 5 .4 744.3 4548 8345 19,676 

N9 (22) and (26) –(30) (28) → (31) 3 25 .5 746.2 2300 5363 74,422 

N10 x (22) and (26) –(30) (28) → (31) 3 9 .3 746.2 4548 6796 18,127 

N11 (26) –(30) and (32) 3 5 .6 744.3 2300 5311 21,377 

N12 x (26) –(30) and (32) 3 3 .3 744.3 4548 6743 16,472 
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We also tested our algorithms on the dataset “SET2” de-

scribed in Kwanashie and Manlove (2014) and available at http:

//researchdata.gla.ac.uk/244/ . It comprises 700 instances with 100,

150, 200, 250, 300, 350, 400 doctors, and 7, 10, 14, 17, 21, 24, 28

hospitals, respectively. The number of available positions was ex-

actly equal to the number of doctors. Doctors chose exactly 5 hos-

pitals, and the tie density was equal to 0.85. 

Table 9 compares twelve combinations of the proposed im-

provements, with preprocessing, on the 3 SFAS real-world in-

stances. The meaning of the columns is unchanged with respect

to Table 3 , except for “stability constraints”, which now indi-

cates the set of stability constraints used by the model, and

“stability constraint merging”, which now indicates whether con-

straints (28) were merged or not. 

The table shows a number of interesting facts: 

• The real-world instances did not challenge the algorithms. 
• Using dummy variables seems beneficial as algorithms that use

them have always a lower average running time than those that

do not (e.g., 144.8 seconds for N1 versus 18.7 for N2 and 5.6

seconds for N11 versus 3.3 for N12). Even if the decrease in the

average number of non-zero elements is less spectacular than

for SMTI-GRP, it is still significant for some models (e.g., 63 , 272

for N1 versus 11 , 278 for N2 and 21 , 277 for N11 versus 16 , 472

for N12). 
• The kind of stability constraints used by the model appears to

have a significant impact on the results: while N1 uses on aver-

age 144.8 seconds to solve the SFAS instances, N3 (which uses

only the new set of stability constraints) requires merely 10.1

seconds. N7, that uses both sets of stability constraints, is a

bit worse, even if it has the best continuous relaxation value:

744.3 versus 747.4 for N1 and 744.5 for N3. N11, that replaces

the original set of stability constraints (22) by (32) , obtains the

best relaxation and one of the best average running times. 
• Merging stability constraints (28) is not beneficial on these in-

stances, as all algorithms that merge stability constraints have

a worse average running compared to those that do not (e.g.,

15.9 seconds on average for N5 versus 10.1 for N3, and 25.5

seconds for N9 versus 16.1 for N7). This can be explained by

the fact that almost no gain is obtained in terms of number of

constraints (e.g., 3465 for N5 versus 5014 for N3), but a signif-

icant loss is observed in terms of continuous relaxation value

(e.g., 747.8 for N5 versus 744.5 for N3). 
• Overall, this computational experiment suggests that the best

configurations are N8, N11, and N12. All of them use two sets
of stability constraints and no constraint merging. 
Again, if stability constraints are dropped, the problem becomes

olvable in polynomial time ( Gabow, 1983 ) and the matching size

s increased by at most 1%. 

Table 10 compares the same twelve combinations on the liter-

ture instances SET2. Overall, the SET2 instances cannot be con-

idered very challenging as all algorithms apart from N1 can solve

hem to optimality in less than 5 seconds on average. In addition,

e notice that the algorithms’ behaviour does not change signifi-

antly: (i) dummy variables still seem useful, even if for some con-

gurations (N4 and N12) no significant change is observed, (ii) the

ind of stability constraints used still has a significant impact on

he overall results, and (iii) using constraint merging still deterio-

ates the overall results. We note also that no major difference in

he continuous relaxation is observed among the models. This is

robably due to the fact that in 598 instances out of 700, all doc-

ors could be assigned to a hospital, so the continuous relaxation

alue and the optimal solution were identical. 

As all the real-world and literature instances could be solved

ithin an hour, we generated new instances with the instance

enerator described in Irving and Manlove (2009) . These instances

ave 759 × i doctors, 53 × i hospitals, and 775 × i available posi-

ions, where i ∈ {1, 2, 3, 5, 10} and are called “RDM i ” in the follow-

ng. Doctors chose between 5 and 6 hospitals, and the tie density

n the hospitals’ side was equal to 0.85. For each i , 30 instances

ere created, resulting in 150 instances in total. These parameters

ere chosen to mimic the real-world SFAS instances at a larger

cale. 

Table 11 compares the twelve combinations on the RDM i in-

tances. In order to be concise, we only report in the table the

umber of optimal solutions found and the average running time

or each method. 

Besides the observations made previously, which are still valid

verall, we clearly notice that using two sets of stability constraints

s significantly faster, especially for RDM2 and RDM3. In addition,

e observe that large instances are extremely difficult, as only four

f the RDM5 instances could be solved within an hour of comput-

ng time per instance. We also report that none of the tested al-

orithms could solve any of the RDM10 instances, even though the

odels had a reasonable size (e.g., for RDM10, N12 used on aver-

ge 40,866 variables, 60,504 constraints and 145,259 non-zero ele-

ents). Finally, even if no “new” configuration clearly outperforms

he others, all of them outperform the literature state-of-the-art

odel N1. 

Table 12 studies the impact of the preprocessing developed in

rving and Manlove (2009) (we recall that the algorithms given

n Section 4 are applicable to SMTI instance only), the use of the

ale–Shapley algorithm to give a warm-start to the solver, and the

http://researchdata.gla.ac.uk/244/
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Table 10 

Comparison of the proposed methods for preprocessed HRT SET2 instances. 

Method Values Model size 

Index Dummy 

variables 

Stability constraints Stab. cons. 

merging 

#Opt Time Continuous 

relaxation 

Number of 

variables 

Number of 

constraints 

Number of 

non-zeros 

N1 (22) 694 59 .7 249.9 619 886 16,046 

N2 x (22) 700 1 .8 249.9 1382 1382 3735 

N3 (26) –(30) 700 0 .7 249.9 781 1667 5315 

N4 x (26) –(30) 700 0 .8 249.9 1544 2163 5297 

N5 (26) –(30) (28) → (31) 700 4 .9 249.9 781 1193 4841 

N6 x (26) –(30) (28) → (31) 700 1 .6 249.9 1544 1689 4823 

N7 (22) and (26) –(30) 700 1 .3 249.9 781 2286 20,123 

N8 x (22) and (26) –(30) 700 0 .6 249.9 1544 2782 6534 

N9 (22) and (26) –(30) (28) → (31) 700 3 .1 249.9 781 1812 19,649 

N10 x (22) and (26) –(30) (28) → (31) 700 0 .8 249.9 1544 2308 6060 

N11 (26) –(30) and (32) 700 0 .7 249.9 781 1794 7706 

N12 x (26) –(30) and (32) 700 0 .7 249.9 1544 2291 5552 

Table 11 

Comparison of the proposed methods for preprocessed HRT RDM instances. 

Method RDM1 RDM2 RDM3 RDM5 

Index Dummy 

variables 

Stability constraints Stab. cons. 

merging 

#Opt Time #Opt Time #Opt Time #Opt time 

N1 (22) 25 848 12 2656 2 3485 0 3600 

N2 x (22) 29 336 17 2056 9 2919 2 3524 

N3 (26) –(30) 30 82 16 1844 9 2667 2 3491 

N4 x (26) –(30) 30 136 18 1815 10 2694 2 3395 

N5 (26) –(30) (28) → (31) 28 418 11 2358 4 3253 1 3574 

N6 x (26) –(30) (28) → (31) 28 335 13 2253 6 3009 0 3600 

N7 (22) and (26) –(30) 30 66 25 1170 14 2298 1 3495 

N8 x (22) and (26) –(30) 30 62 25 1070 13 2267 4 3372 

N9 (22) and (26) –(30) (28) → (31) 30 134 20 1702 13 2763 1 3509 

N10 x (22) and (26) –(30) (28) → (31) 30 52 25 1023 14 2184 2 3397 

N11 (26) –(30) and (32) 30 46 24 1270 13 2352 3 3434 

N12 x (26) –(30) and (32) 30 99 24 1252 14 2251 3 3353 

Table 12 

Comparison of N1 and N8 with additional features on RDM1 and RDM2. 

Method RDM1 RDM2 

Index Prep. Warm 

start 

Variable 

priorities 

#Opt Time nb. var. nb. cons. nb. nzs. #Opt Time nb. var. nb. cons. nb. nzs. 

N1 1 3581 4173 4985 225,332 0 3600 8343 9967 453,286 

N1 x 25 848 1614 2426 37,563 12 2656 3260 4884 76,135 

N1 x x 28 524 1614 2426 37,563 15 2271 3260 4884 76,135 

N8 30 42 9755 18,102 43,738 26 1036 19,470 36,156 87,373 

N8 x 30 62 4075 7304 17,026 25 1070 8214 14,733 34,365 

N8 x x 30 82 4075 7304 17,026 25 957 8214 14,733 34,365 

N8 x z jk 30 37 4075 7304 17,026 26 840 8214 14,733 34,365 

N8 x y d 
ik 

and y h 
jk 

30 82 4075 7304 17,026 25 1069 8214 14,733 34,365 
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se of priorities on some variables during the branch-and-bound

rocess. We tested these features on the basic model (N1), and one

f the best algorithms (N8). We selected N8 because it obtained

ood results on all the datasets we tested in comparison with the

ther configurations (N8 solved 72 RDM i instances versus 71 for

12 and 70 for N11). 

Unlike for MAX-WT-SMTI-GRP, the preprocessing seems useful

or N1 but not for N8. Further investigations showed that, for N8,

he inner preprocessing of Gurobi removed a similar amount of

ariables, constraints, and non-zero elements compared with the

reprocessing of Irving and Manlove (2009) . This was neither the

ase for N1, nor for M1 and M4 for MAX-WT-SMTI-GRP (with the

reprocessing of Section 4 ). Using the Gale–Shapley algorithm to

rovide a warm start allowed N1 to solve an additional six in-

tances from RDM1 and RDM2, but it slightly slowed down N8.

inally, giving priorities to the y d 
ik 

and y h 
jk 

variables during the

ranching process does not seem to help the ILP solver, however,
rioritising the z jk variables appears to be beneficial. Further inves-

igations showed that this statement was true for all the models

nvolving z jk variables (i.e., N3 , N4 , . . . , N12 ). 

.3.2. Master list instances 

As there is no existing set of instances that includes a master

ist in the literature, we used the generator described in Irving

nd Manlove (2009) to create new data sets. The same param-

ters (759 × i doctors, 53 × i hospitals, and 775 × i available posi-

ions, where i ∈ {1, 2, 3, 5, 10}) were used, and the grades obtained

y the doctors were distributed in [1, j ] where j ∈ {5, 15, 25}. The

istribution of doctor grades was controlled using a “skewedness”

arameter x in the instance generator, which means that the most

ommon doctor score is likely to occur x times more than the least

ommon. Higher values of x hence result in longer ties in the mas-

er list, and therefore also in the hospitals’ preference lists. In our

xperiments we used the value x = 3 . 
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Table 13 

Comparison of N1 and N8 for preprocessed HRT RDM-ML- i − j instances. 

Instances N1 N8 + priorities on z jk variables 

j i #Opt Time nb. var. nb. cons. nb. nzs. #Opt Time nb. var. nb. cons. nb. nzs. 

25 1 30 0 .0 834 1646 9869 30 0 .1 2768 4436 9747 

2 30 0 .1 1658 3282 19,462 30 0 .1 5528 8843 19,420 

3 30 0 .1 2464 4900 28,656 30 0 .2 8217 13,145 28,850 

5 30 0 .2 4097 8157 47,663 30 0 .3 13,688 21,881 48,011 

10 30 0 .5 8191 16,311 95,056 30 0 .8 27,356 43,738 95,971 

15 1 30 0 .1 913 1725 12,230 30 0 .1 2738 4565 10,159 

2 30 0 .3 1804 3428 23,945 30 0 .2 5443 9051 20,117 

3 30 0 .5 2712 5148 35,939 30 0 .4 8176 13,600 30,233 

5 30 3 .8 4534 8594 60,305 30 1 .4 13,647 22,715 50,516 

10 30 10 .7 90 0 0 17,120 118,923 30 9 .5 27,164 45,164 100,373 

5 1 29 227 .0 1688 2500 49,510 30 1 .1 3868 7244 17,052 

2 29 270 .5 3336 4960 97,526 30 7 .0 7657 14,329 33,709 

3 22 1326 .5 5098 7534 151,203 30 271 .3 11,665 21,861 51,488 

5 17 1929 .3 8297 12,357 239,442 28 521 .7 19,047 35,641 83,829 

10 6 3034 .2 16,963 25,083 494,286 21 1734 .3 38,807 72,733 171,301 
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The constructed instances are called “RDM-ML- i −j ” in the fol-

lowing. For each pair ( i , j ), 30 instances were created, resulting in

450 instances in total. 

Table 13 compares the literature algorithm N1 and algorithm

N8 when priorities are given to the z jk variables (its best configu-

ration). In both cases, preprocessing was applied. 

It appears that instances that have a master list are significantly

easier than those that do not, as each method can solve at least

one instance of each group, even for RDM-ML-10 − j. In addition, it

seems that datasets allowing a larger range for the grades (RDM-

ML- i −25 and RDM-ML- i −15), are easier as even the basic algo-

rithm N1 can solve them all in seconds. Difficult master list in-

stances have a very narrow range of grades (e.g., j = 5 ), and many

doctors and hospitals (e.g., i = 5 or 10). On these instances, we can

appreciate the benefits of the proposed improvements, as N1 can

only solve 6 RDM-ML-10-5 instances, while N8 with priorities can

solve 21 of them. Overall, for the 90 RDM-ML-10 − j instances gen-

erated, N1 can solve 66, whereas N8 with priorities can solve 81,

an increase of 23%. 

7.4. Summary of the experiments 

We empirically showed that, overall, we could solve signif-

icantly larger instances of MAX-WT-SMTI-GRP, MAX-SMTI, and

MAX-HRT when compared to the existing methods. However, we

observed that each problem had its own peculiarities. 

For our practical case of MAX-WT-SMTI-GRP (the Coram ap-

plication), characterised by a medium number of agents and very

long preference lists, it is of paramount importance to reduce the

number of non-zero elements and, thus, it is crucial to use dummy

variables. Indeed, when preference lists are very long, stability con-

straints involve many variables and the size of the models in-

creases quickly. To a lesser extent, it is beneficial to decrease the

number of constraints without deteriorating the continuous relax-

ation too much. Thus, using constraint merging and double stabil-

ity constraints is useful. In conclusion, configurations M4 and M6

are the most suitable for the problem. 

For our MAX-SMTI instances, characterised by a very large num-

ber of agents and shorter preference lists, it is vital to reduce

the number of constraints and, thus, it is advised to use con-

straint merging. Indeed, under these conditions, the models involve

many stability constraints, which can be difficult to tackle by ILP

solvers, even if they do not involve as many variables as they did

for MAX-WT-SMTI-GRP. To a lesser extent, it is beneficial to de-

crease the number of non-zero elements, but only when it is not

at the expense of a significant increase in terms of variables and

constraints. Thus, using dummy variables is beneficial when the
ie density is high and when the preference list length is not too

mall. For this problem, configurations M3 and M4 are the most

uitable. 

For our MAX-HRT instances with no master list, characterised

y a medium number of agents and short preference lists, it is im-

ortant to help the solver reduce the gap between the lower and

pper bounds and, thus, it is advised to use two sets of stability

onstraints. Indeed, we observed that the solver struggled to solve

ome instances even when the size of the model was reasonable.

or this problem, configurations N8 and N12 are the most suitable.

The MAX-HRT instances with a master list that we tested,

hich aimed to mimic the real-world SFAS instances at a larger

cale, did not present any sort of challenge when the grade range

as reasonably large (i.e., at least 15 in our experiments). For in-

tances with a very narrow grade range (i.e., 5 in our experiments),

sing N8 with preprocessing and the adequate priorities is advised.

Finally, we observed that preprocessing was useful for MAX-

T-SMTI-GRP, but not always useful for MAX-HRT (e.g., with con-

guration N8) or for MAX-SMTI. In addition, we saw that using a

arm start could help some algorithms (e.g., N1 for MAX-HRT),

nd slow down some others (e.g., N8 for MAX-HRT). Finally, we

lso empirically observed that giving priorities to some specific

ets of variables during the branching process of the ILP solver

ould be beneficial (e.g., giving priority to the z jk variables of N8

or MAX-HRT). 

. Conclusion 

We described two algorithms for preprocessing instances of

MTI where ties occur on both sides. This resulted in significant

mprovements when applied to models from the literature, solv-

ng an additional 15 (of 22 total) real-world MAX-WT-SMTI-GRP

nstances from Coram within one hour per instance. We also in-

roduced new ILP models for SMTI, first by using dummy vari-

bles to reduce the complexity of the constraint matrix, and then

y merging stability constraints, and using double stability con-

traints. Various combinations of techniques were demonstrated to

mprove the performance of our models, and together with the ear-

ier preprocessing our new models solved all 22 Coram instances

ith a mean runtime of less than one minute. Computational ex-

eriments on randomly generated instances also showed that our

odels could solve instances of SMTI with up to 50,0 0 0 agents

er side. The new ILP models were also extended to HRT, where

e showed a performance improvement from 144 seconds to 3

econds on average on real-world instances from SFAS. We also

howed that we could solve an additional 23% of randomly gener-
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ted instances with around 7500 doctors and hospital places when

ompared to state-of-the-art models. 

In this paper we have not considered issues of strategy, how-

ver this direction is certainly worthy of further study in in-

tances of SMTI-GRP and HRT. In the context of the classical Hospi-

als/Residents problem, it is a well-known result that, with respect

o the Resident-oriented Gale–Shapley algorithm ( Gale & Shapley,

962; Gusfield & Irving, 1989 ), it is a dominant strategy for the

octors to tell the truth ( Roth, 1985 ). On the other hand, there is

o mechanism that is stable and strategy-proof for hospitals ( Roth,

986 ). Relative to any mechanism in SMTI-GRP or HRT that is

ased on finding a maximum cardinality stable matching, it is not

ifficult to show that weights or preferences (respectively) could

e falsified by doctors and/or hospitals in order to improve their

utcomes relative to their true preferences (e.g., by declaring less

esirable preferences as unacceptable). We leave as future work

he investigation of the existence of strategy-proof mechanisms for

nstances of SMTI-GRP and HRT that produce good approximations

o maximum cardinality stable matchings. 

Further work also includes extending our preprocessing algo-

ithms for SMTI to the more general case of HRT. This may lead

o the exact solution of larger HRT instances than we considered

n this paper. It also remains open to extend our models to the

xtension of HRT where couples apply jointly to pairs of hospitals.
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